

ОАО "Ливгидромаш"

РОССИЯ 303851 г.Ливны Орловской обл. Ул. Мира, 231

ЭЛЕКТРОНАСОСЫ ЦЕНТРОБЕЖНЫЕ ПОГРУЖНЫЕ

типа Гном

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ 28 ТНП.00.000 РЭ

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение изделия

Электронасосы центробежные погружные типа Γ ном (в дальнейшем - электронасосы) предназначены для откачивания загрязненных вод температурой до 35 0 C, исполнение Tp - до 60 0 C, плотностью до 1100 кг/м 3 ,

при содержании твердых механических примесей до 10 % по массе с плотностью твердых частиц не более 2500 кг/м³ и максимальным размером до 5 мм.

Область применения электронасоса — откачивание сточных вод в промышленных системах.

Электронасосы не предназначены для эксплуатации во взрыво и пожароопасных помещениях.

Электронасосы относятся к изделиям общего назначения вида 1, восстанавливаемый по ГОСТ 27.003-90.

Электронасосы изготавливаются в климатическом исполнении У* ГОСТ 15150-69.

Режим работы продолжительный.

Условия работы – под надзором.

Условное обозначение электронасоса в трехфазном исполнении при заказе должно быть:

Электронасос <u>Гном 10 - 10 Тр, 380 В ТУ 3631-025-05747979-2003,</u>
1 2 3 4 5

где

- 1 торговое наименование;
- 2– номинальная подача, $M^3/4$;
- 3 номинальный напор, м;
- 4 без обозначения для воды температурой до 35 0 C, Тр - для воды температурой до 60 0 C;
- 5 номинальное напряжение, В.

Условное обозначение электронасоса в однофазном исполнении при заказе должно быть:

Электронасос <u>Гном 10 - 10 Д, 220 В ТУ 3631-025-05747979-2003,</u>

1 2 3 4 5

где

- 1 торговое наименование;
- 2– номинальная подача, M^3/V^2 ;
- 3 номинальный напор, м;
- 4 без обозначения –без датчика уровня, Д – с датчиком уровня (с поплавковым выключателем);
- 5 номинальное напряжение, В.

Электронасос сертифицирован на соответствие ГОСТ Р МЭК 60204-1-2007. Сертификат соответствия № РОСС RU.AЯ45.В05509.

Действителен до 08.06.2012г.

Выдан Сертификационным Центром НП «СЦ НАСТХОЛ».

1.2 Технические характеристики

1.2.1 Основные технические характеристики электронасосов на номинальном режиме работы указаны в таблице 1. Таблица 1

Наименование показателя	Гном 10-6, Гном 10-6Д	Гном 6-10, Гном 6-10Д	Гном 10-10, Гном 10-10Д	Гном 16-16, Гном 16-16Д	Гном 10-10	Гном 10-10Тр	Гном 16-16	Гном 16-16Тр
Подача,	10	6	10	16	10 16		16	
$M^{3}/\Psi (\Pi/c)$	(2,78)	(1,66)	(2,78)	(1,66)	(2,78)		4,44)	
Напор, м	6	10	10	16	10 16		16	
Параметры	1~220 В, 50 Гц			3~380 В, 50 Гц				
энергопитания				2 200 2,001 4				
Номинальная мощность	0) 6	1,1	2,2	0.75	1,1		
электродвигателя, кВт	0,6		1,1	2,2	0.73	1,1	2,2	
Ток, А	3,0		8	11	2,0			3,5
КПД, %, не менее	30			40				
Класс								
нагревостойкости	F							
Масса, кг, без шнура питания, не более	1	15	16	28	15	16		24

Примечания

- 2 КПД указан для оптимальной точки, находящейся в рабочем интервале характеристики.
 - 1.2.2 Габаритные размеры приведены на рисунке 1.
 - 1.2.3 Напорная характеристика приведена на рисунке 2.
 - 1.2.4 Показатели надежности электронасоса указаны в разделе 4, при этом:
- критерием отказа электронасоса является снижение сопротивления изоляции менее 1 МОм в холодном состоянии и менее 0.5 МОм при рабочей температуре;
- критерием предельного состояния электронасоса является нарушение электрической прочности изоляции.

¹ Допустимое отклонение напора минус 10%, ток +15 %, КПД -минус 3% . отклонение напряжения сети питания + 10 % минус 5 % и частоты тока ±2 %

1.3 Состав изделия

- упаковка

1.3.1 В комплект поставки входит :

- Электронасос со шнуром питания 10 м в трехфазном исполнении или электронасос со шнуром питания 10 м и пусковым устройством в однофазном исполнении - руководство по эксплуатации

Комплект монтажных частей:

- *Автоматический выключатель (автомат защиты моторов) - 1 шт.

- 1 шт.

- 1шт.

- 1 шт.

^{*} По требованию заказчика за отдельную плату для электронасосов в трехфазном исполнении на напряжение 380 В.

1.4 Устройство и работа

Устройство электронасоса в соответствии с рисунком 1.

Электронасос представляет собой переносной моноблок, состоящий из электродвигателя и насосной части.

Насосная часть состоит из рабочего колеса 5, закрепленного гайкой 3, корпуса насоса 4 и диафрагмы 18, зафиксированной стопорным кольцом 2.

К корпусу насоса крепится легкосъемный фильтр 1.

Приводом электронасосов является трехфазный асинхронный электродвигатель или однофазный конденсаторный асинхронный электродвигатель. Электродвигатель состоит из ротора 11, статора 12, трубы 13, щита подшипника 9 и крышки 15.

Синхронная частота вращения ротора 3000 об/мин. Направление вращения – против часовой стрелки, если смотреть со стороны насосной части.

Шнур питания электронасоса с трехфазным электродвигателем имеет свободный конец для подключения к автоматическому выключателю. Заземляющая жила шнура питания подключена к внутренней стороне крышки.

Запуск электронасоса с приводом от однофазного электродвигателя осуществляется посредством пускового устройства 16,смонтированного на шнуре питания. Пусковое устройство имеет рабочий конденсатор, автоматический выключатель для защиты электродвигателя от перегрузки и армированный шнур питания для подключения к однофазной сети.

Нижний подшипник 10 устанавливается в щите подшипника на герметик.

Крышка и щит подшипника уплотняются резиновыми кольцами 14.

В щите подшипника имеется пробка 7 для заливки масла.

Опломбированная пробка в крышке служит для технологических целей при сборке электронасоса.

Внутренняя полость электродвигателя со стороны выступающего конца вала отделена от проточной части масляной камерой 8 и манжетами 6, запрессованными в корпусе насоса и в щите подшипника. Полость между манжетами заполняется литолом.

Охлаждение электродвигателя осуществляется за счет теплоотдачи в окружающую среду (воду).

Электронасосы в однофазном исполнении изготавливаются со встроенным датчиком уровня (поплавковым выключателем) и без датчика уровня..

Примечание – В связи с постоянным усовершенствованием конструкция электронасоса может незначительно отличаться от изображенной на рисунке 1.

1.5 Маркировка и пломбирование

1.5.1 Знаки и надписи на электронасосе Гном 10-10 означают:

- товарный знак предприятия-изготовителя

- знак соответствия

Электронасос Гном 10-10 ТУ 3631-025-05747979-2003 - условное обозначение электронасоса.

220 В - номинальное напряжение;

1 - число фаз;

~ - род тока ;

50 Гц - номинальная частота тока;

1,1 кВт - номинальная мощность электродвигателя;

8,0 А - номинальный ток;

Н тах 12м - максимальный напор;


 $Q \max 18 \text{ m}^3/\text{ч}$ - максимальная подача;

IРХ8 - степень защиты;

✓ 7м - максимальная рабочая глубина погружения;

35 °C - максимальная температура жидкости .

- 1.5.2 Электронасос опломбирован. Красная метка на шпильке и пробке является гарантийной пломбой.
- 1.5.3 Направление вращения ротора обозначено стрелкой, указанной на крышке электронасоса.

Типоразмер	Параметры	Н, мм,	L, mm,	
электронасоса	энергопитания	не более	не более	
Гном 10-6, Гном10-6Д		360		
Гном 6-10, Гном 6-10Д	1~220 B	300	210	
Гном 10-10, Гном 10-10Д		380		
Гном 16-16, Гном 16-16Д		450	245	
Гном 10-10		360	210	
Гном 10-10Тр	3~380 B	380	210	
Гном 16-16		420	245	
Гном 16-16 Тр		720	443	

1-фильтр, 2- кольцо стопорное, 3- гайка, 4- корпус насоса, 5- колесо,6- манжета, 7- пробка, 8- масляная камера, 9- щит подшипника, 10- подшипник, 11- ротор, 12- статор, 13- труба, 14- кольцо, 15- крышка, 16- устройство пусковое, 17- штуцер, 18-диафрагма.

Рисунок 1 - Устройство электронасоса

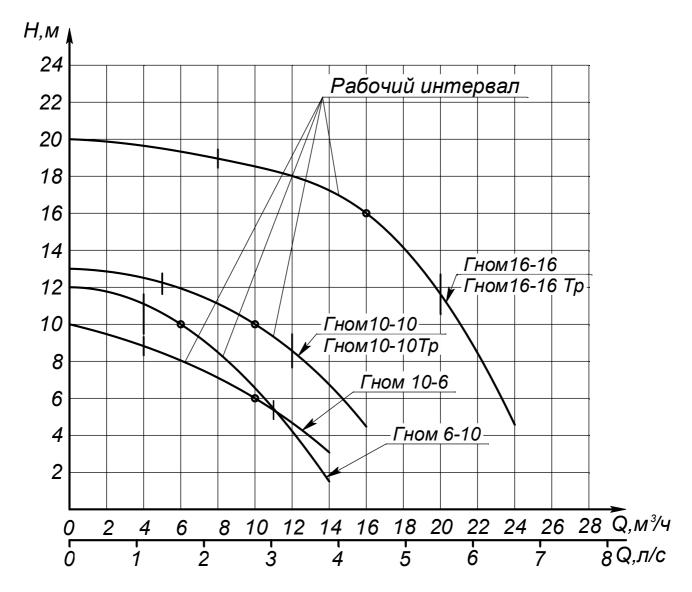


Рисунок 2-Характеристика электронасосов

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

- 2.1 Эксплуатационные ограничения
- 2.1.1 ПРИ ЭКСПЛУАТАЦИИ, ТРАНСПОРТИРОВАНИИ И ХРАНЕНИИ ЭЛЕКТРОНАСОС ДОЛЖЕН НАХОДИТЬСЯ В ВЕРТИКАЛЬНОМ ПОЛОЖЕНИИ.
- 2.1.2 ПОДКЛЮЧЕНИЕ ЭЛЕКТРОНАСОСА В ТРЕХФАЗНОМ ИСПОЛНЕНИИ ДОПУСКАЕТСЯ ТОЛЬКО ЧЕРЕЗ АВТОМАТИЧЕСКИЙ ВЫКЛЮЧАТЕЛЬ С КОМБИНИРОВАННЫМ ТЕРМОМАГНИТНЫМ РАСЦЕПИТЕЛЕМ ИЛИ СХОЖИЙ С НИМ ПО ХАРАКТЕРИСТИКАМ согласно таблице 2.

Таблица 2

Типоразмер	Автоматический	Ток уставки
электронасоса	выключатель	теплового
	BA 6000	расцепителя, А
Гном 10-10	GV 2-07	1,8
Гном 10-10 Тр	0, 2 0,	1,0
Гном16-16	GV 2-10	4,4
Гном 16-16 Тр	0 , 2 10	.,.

Время отключения автоматического выключателя при токе, превышающем номинальный на $20\,\%$ - $500\,\mathrm{c}$.

При аварийном снижении напряжения расцепитель минимального напряжения отключает выключатель.

Схема подключения приведена на рисунках 3 и 4.

- 2.1.3 НЕ ДОПУСКАЕТСЯ ДЛИТЕЛЬНАЯ РАБОТА С ПОЛНОСТЬЮ ПЕРЕ-КРЫТОЙ ПОДАЧЕЙ.
- 2.1.4 КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ КАСАТЬСЯ ВКЛЮЧЕННОГО В ЭЛЕКТРОСЕТЬ ЭЛЕКТРОНАСОСА.
- 2.1.5 ЗАПРЕЩАЕТСЯ ВКЛЮЧАТЬ ЭЛЕКТРОНАСОС, ПОЛНОСТЬЮ НЕ ПОГРУЖЕННЫЙ В ВОДУ.
- **2.1.6 ЗАПРЕЩАЕТСЯ ЭКСПЛУАТАЦИЯ ЭЛЕКТРОНАСОСА С ПОВРЕЖ- ДЕННЫМ ШНУРОМ ПИТАНИЯ.**

При повреждении шнура питания во избежание опасности его должен заменить изготовитель или его агент, или аналогичное квалифицированное лицо.

2.1.7 ЗАПРЕЩАЕТСЯ ПЕРЕНОС, ПОДЪЕМ И ОПУСКАНИЕ ЭЛЕКТРО-НАСОСА ЗА ШНУР ПИТАНИЯ. ЭЛЕКТРОНАСОС СЛЕДУЕТ ПЕРЕНОСИТЬ ТОЛЬКО ЗА РУЧКУ.

2.2. Подготовка к использованию

- 2.2.1 К обслуживанию электронасоса допускается персонал, имеющий соответствующую техническую подготовку и ознакомленный с настоящим руководством по эксплуатации.
- 2.2.2 Перед началом работ с электронасосом проверить отсутствие замыкания жил шнура питания на корпус электронасоса мегаомметром.
- 2.2.3 Автоматический выключатель, пусковое устройство должны быть защищены от попадания прямых солнечных лучей, брызг и влаги.
 - 2.2.4 Нулевой провод должен быть заземлен.
- 2.2.5 Проверить сопротивление изоляции системы кабель-двигатель. Сопротивление изоляции обмотки электронасоса относительно корпуса и между обмотками должно быть не менее 1 МОм в холодном состоянии и не менее 0,5 МОм при рабочей температуре.
- $2.2.6\,$ Проверить наличие масла в масляной камере 8 (визуально), для чего электронасос положить горизонтально пробкой вверх, выкрутить пробку 7. При повороте электронасоса вокруг оси на $30^0...45^0$ масло должно вытекать через заливное отверстие.
 - 2.2.7 Надеть на штуцер 17 шланг и закрепить.
- 2.2.8 Погрузить электронасос в воду. Для электронасоса в трехфазном исполнении проверить вращение ротора, для чего сделать два пробных пуска, меняя при этом две любые фазы. Правильному направлению вращения соответствует больший напор.
- 2.2.9 При опускании электронасоса в котлован, необходимо пользоваться тросом.

2.3 Порядок работы

- 2.3.1 Электронасос включается в работу непосредственно после его погружения в воду.
 - 2.3.2 РАБОЧЕЕ ПОЛОЖЕНИЕ ЭЛЕКТРОНАСОСА ВЕРТИКАЛЬНОЕ.
- 2.3.3 Если дно котлована песчаное или илистое, электронасос установить на какую-либо подставку (доску) или подвесить его на трос так, чтобы он располагался несколько выше дна.
- 2.3.4 Электронасос может работать в погруженном состоянии длительное время. Эксплуатация в полупогруженном состоянии (когда электродвигатель находится над уровнем воды) допускается не более 10 минут.
- 2.3.5 В электронасосах с однофазным двигателем при коротком замыкании или перегрузке срабатывает автоматический выключатель, который отключает электронасос от сети.

Для повторного запуска электронасоса включить автоматический выключатель.

- 2.3.6 Если подача внезапно прекратилась и электронасос не работает, отключить его от сети, поднять на поверхность, выяснить неисправность и ее причины. После устранения неисправности электронасос можно вновь включать в сеть.
- 2.3.7 Эксплуатация электронасоса допускается в пределах всей напорной характеристики. Рабочий интервал на характеристике определяет наиболее экономичный режим работы электронасоса.

2.4 Возможные неисправности и способы их устранения

2.4.1 Перечень возможных неисправностей приведен в таблице 3. Таблица 3

0	
Отсутствие напряжения	Проверить наличие
или низкое напряжение	напряжения в сети.
в сети.	
Повреждение шнура	Проверить исправность
питания.	шнура питания.
Заклинивание рабочего	Прочистить зону рабочего
колеса.	колеса.
Короткое замыкание в	Проверить электрическую
цепи электродвигателя.	цепь и устранить
	неисправность.
Засорение проточной	Прочистить проточную
части электронасоса.	часть электронасоса, сняв
	фильтр и диафрагму.
	или низкое напряжение в сети. Повреждение шнура питания. Заклинивание рабочего колеса. Короткое замыкание в цепи электродвигателя.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1 Общие указания

- 3.1.1 Техническое обслуживание электронасоса производится квалифицированными специалистами только при его использовании.
- 3.1.2 После работы электронасоса в воде с большим содержанием механических примесей его необходимо на непродолжительное время запустить в чистой воде с целью очистки проточной части.
- 3.1.3 Не реже одного раза в месяц производить замену масла, проверять отсутствие механических повреждений на электронасосе и шнуре питания.
- 3.1.4 Ежемесячно производить замеры сопротивления изоляции системы кабель-двигатель, которое должно быть не менее 0,5 МОм на прогретом электронасосе.

3.2 Замена масла

3.2.1 Для замены масла в масляной камере необходимо открутить пробку 7 на трубе 13, залить в отверстие масло индустриальное марки И-20A или И-40A в количестве 300 мл.

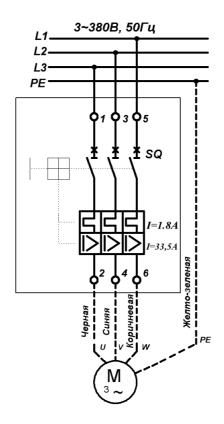


Рисунок 3—Подключение электронасоса Гном 10-10, Гном 10-10 Тр через автоматический выключатель

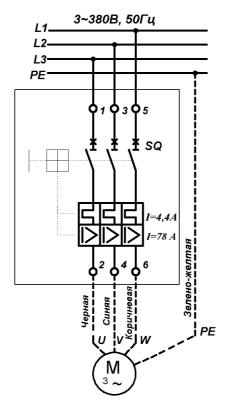


Рисунок 4—Подключение электронасоса Гном 16-16, Гном 16-16 Тр через автоматический выключатель

4 РЕСУРСЫ, СРОКИ СЛУЖБЫ И ХРАНЕНИЯ, ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Средний ресурс до капитального ремонта <u>6000 часов</u> в течение срока службы не менее <u>5 лет</u>, в том числе срок хранения <u>2 года в консервации изготовителя в закрытых отапливаемых или охлаждаемых и вентилируемых помещениях (группа 4 ГОСТ 15150-69)</u>

Средняя наработка на отказ не менее 2500 часов

Среднее время восстановления не более 3-х часов.

Указанные ресурсы, сроки службы и хранения действительны при соблюдении потребителем требований настоящего руководства по эксплуатации.

Гарантии изготовителя — 12 месяцев со дня ввода электронасоса в эксплуатацию.

Если в течение гарантийного срока в электронасосе обнаружены дефекты по вине изготовителя, потребителю следует обратиться на предприятие-изготовитель по адресу:

303851 г.Ливны Орловской обл., ул.Мира 231 ОАО «Ливгидромаш», ОТК.

5 ХРАНЕНИЕ

- 5.1 Для длительного хранения электронасос следует промыть в чистой воде и просушить.
- 5.2 Хранить электронасос следует в сухом помещении вдали от отопительных приборов.
 - 5.3 Температура хранения от плюс 50 до минус 30 0 С.

6 УТИЛИЗАЦИЯ

- 6.1 Электронасос не содержит веществ, представляющих опасность для жизни, здоровья людей и окружающей среды.
- 6.2 После окончания срока эксплуатации утилизацию электронасоса потребитель осуществляет по своему усмотрению.

7 КОНСЕРВАЦИЯ

Дата	Наименование работы	Срок действия, годы	Должность, фамилия,
			подпись
	Произведена консервация	2 года	